HEATING OF THIN-WALL SHELLS OF REVOLUTION

P. A. Novikov, L. Ya. Lyubin, UDC 536.24
and V. I. Balakhonova

The temperature field is determined in thin-wall shells of revolution. The solved problems enable
one to estimate the possihility as well as the quality of thermostatic control of objects by means
of heat flowing along the length of the shell.

Many elements of design equipment operating under vacuum conditions are in the form of shells of
revolution whose temperature is determined by heat radiation into the surrounding space and also by convective
heat exchange with gas (or liquid) inside the shell, as well as by the distribution of heat sources and sinks
(various units and systems releasing or absorbing heat) along the shell.

It is very difficult to determine the temperature field of a shell in the general case. However, in two
limiting cases which are of practical interest it is possible to find exact solutions for some shell shapes.

If the inequality A6/ hL?<« 1 is satisfied, one can ignore the heat flowing along the length of the shell.
Moreover, if there is no convective heat exchange, the temperature field in the shell is determined by the heat
flux to various portions, by shell radiation into space, and by radiative heat exchange between shell elements
2, 3}

The other limiting case A6/hL%> 1 is now considered; consequently, the flow down the shell is essential
insofar as one is able to linearize the problem, that is, the specific heat flux which corresponds to the shell
radiation into space can be written as

g, =~ 46T3T — 30T} , (1)

where T is the absolute temperature of any point of the shell. It is assumed that by virtue of the flow down

the mid-surface one has (T—T;) < T;. It is also assumed that the mid-surface of the shell is cut out by one

or two planes perpendicular to the axis of revolution zone of the coordinate surface ¢ = ¢, in the coordinate
system (£, 7, ¢) in which the variables can be separated in the Laplace operator for the three-dimensional
space or for a given coordinate surface either directly or by introducing an auxiliary function. In agreement
with the above, one considers shells bounded by two coordinate surfaces (£ = £y;5 =¢p3 51+ £y = 2603 8 = £9—£4=
const) or shells of constant thickness (6 = B H; = const) (Fig. 1).

B

Fig. 1. An elementary shell portion.
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Fig. 2, Heating of the segments of a spherical shell which
correspond to the following angles: a) ¥, = 7 — solid lines;
#1 =2/, 7 — dashed lines; ¢, = 7/2 — dashed-dot lines
during time 7 (min) for e= 0.9 and Ag = 0.4 at the shell
points [curves 1, 2, 3 — 4 = 0 (front point); 4, 5,6 — 4 =
7/2;and 7 — $=7];b) S =7 fore = 0.9 and A; = 0.9 at
the points & = 0(n) (curve 1) and ¢ = 7/2 (curve 2).

If one ignores the temperature dependence on the shell thickness and uses the relation (1), the heat-
conduction equation for the first case (8 = const, B Hg # const) can be written as

coBH, %:_ = ABHAT + g— AT. @)

Here q is the specific heat flux (per unit of shell surface) with the second term on the right-hand side of the
relation (1) taken into account. The operator is given by

A_.__I_Q[i(ﬁeHw ,_5_>;i(Hé_Hn._a_‘)]
1 HHH, | oy \ H, an/ dp \ H, g

It was assumed in the derivation of Eq. (2) that there is now radiative heat exchange between individual
portions* of the shell or that it can be ignored.

The heat-conduction equation for a shell of constant thickness 0 is, correspondingly,

cpa% — WAT + g — AT, 3)
T

A=t E_(Hw i)_vﬁ_(_fin_ i)_
~ H,H, [an H, o/ op \ H, 0o

The homogeneous boundary conditions of the second kind are specified (no heat dissipation) on the shell
boundary, namely,

where

1 T, _ 1 0T( M9 _, 4
H, an H, on
It is assumed that at the beginning (v = 0) the shell temperature is zero:
T@©, n, 9)=0. (5)

The general case of arbitrary distribution of initial temperatures can be reduced to the analyzed one by the
substitution

*In the case of a spherical shell containing a diathermal ({ransparent) medium, the problem does not become
more difficult if one takes into account the radiative heat exchange between its elements, since a uniform dis-
tribution of incoming specific heat fluxes over the inner surface is a distinctive feature of a spherical shell
(see, for example, [1}).
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Fig. 3. Distribution of temperatures t along the
meridian for the segments of spherical shells for e=
0.9: a) ¥y = 7/2, Ag=0.4;b) 4, = 7/2, A;=0.9;5¢) & =
T, Ag=0.4;d) S =T, Ag=0.9;e) & =2/,m, Ag= 0.4
The values in the diagrams refer to temperature in °C.

T,=T—T(0, 1, ¢)

The problem (2), (4), (5) can be replaced by an equivalent one by extending it to the entire surface S +
8, + 8, (Fig. 1) and by introducing fictitious heat fluxes q; and q,, that is,

coBH, % — ABHAT —hT — g g, — q,, (6)
g(x, Py=0, if PeS;+ S,
[}‘_ Fho(®)cos (vg) — B Fi(0sin(ve), PES,,

g, (t, P) =jv=¢ v=1
[ 0 PES S,
{‘ Fg\.(r)cos (vg) — S Fi(t)sin(vg), PES,,
qz(T» P) = \':0 \E=l

0 PES S,
The functions F{, (), F§, (), F},(7), F$,(r) have to be determined by employing the boundary conditions (4).

If q is an even function of ¢, then Fﬁ, (1) = ng(r) = 0. In this case the solution is sought in the form

| r=am3 3, 006 Xsn(m o559, M
where X, () is the orthogonal system of eigenfm;tio—ns of the equation ‘
(B L + Ny MIIAM Xio ()] — 154 (1) X () = 0. @)
The operator L is given by
[ L. & ! _q_(Hqu,)_ti_v"
Hy dn*  HHH, on\ H, |dy H'



Fig. 4. Spheroidal coordinates. Fig. 5. Toroidal coordinates.
The function A(n) is adopted in the same way as for the separation of variables in the Laplace equation [4].
There is no difficulty in selecting the functions B(z) and N, (7).

In the general case the function g can be represented as a sum of an even (¢®) and an odd (@®) function, and
the sought solution is equal to the sum of the solutions of Eq. (6) for q’ and q®, respectively.

Substituting the expression (7) in Eq. (6), one obtains the following system of equations:

ﬁ B(n)]“ Ky (1) 83 ()
k=0

L Bm dekvm: N X (14
- = %th(ﬂ). S k}:; o (M) Ay (1)

2 WK (1) By (1) + [N ()

o

+ Fiy(7) 2 ey Xny (M) + Fiv (%) 2 iy Xy (M), (9)
k=0 k=0

where Ay, (T), €, Sk are the expansion coefficients in terms of the eigenfunctions on the surface S+ 8, + 5,
for the following expressions:

Bm) 4 _NYN\YA (X
Am) M}Hg ‘;‘ é‘ 2y (T) XpoM) cos (vg);
B() \ . 10
T MSH; Z 2, (3) cos (ve) gekvxm), (10)
B F3y (1) cos (vg) Vg Xy (1)
A('ﬂ) kﬁHg 2 T k=0 Rv/ Rv
Of course, the following expansions are valid:
Mvcmxn(n) Ny () Xy () = Ed,hvx,v(m (107)

,

By employing these expansions, one can replace Egs. (9) by a system of differential equations for the functions

by (7):
, 2 : , o1 2 : de,,
1By (T) - di B () + — Criy L
- a dt

l

= Ay (V) + € Fly (1) + guuFov (3); 11)
h AY
(dklv duyy + “’;3 Ckl'v)

Formally solving the above equations and substituting the solutions in the boundary conditions (4), one
obtains a system of Volterra integral equations of the first kind with difference kernels for the functions
Fl(r) and FY,(7):
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T T

[ Ki(v—1 ) Flu(t)df + [ Koy (v — 1, 1) Fiu(t)dt = M, (5, my)=0,
0 0 (12)
T T

| Ky (v =t m) Fiu () dt — | Koy (v— 1, my) Fov(f)di + M, (5, m,) = 0.

0 0

Equations (12) are integral equations of the convolution type for

Here 54, 1, can be regarded as parameters,
whose solution it is expedient to use Laplace transforms,

If the surface S, degenerates into a single point, the system (12) reduces to a single integral equation:
(13)

T

g K,(t— tyFo(tydt = M, (v) = 0.

¢
Of course, one arrives at equations of the same form also if there are boundary conditions of the first kind

when the temperature distribution is specified on the shell boundary.
In the case of shells of constant thickness {the latter corresponds to Eg. (3)] the problem is solved

similarly. If g is an even function of ¢, then the solution is sought in the form of (7), where X, (1) is an

orthogonal system of eigenfunctions for the equation of the form (8) in which the operator L is replaced by the

operator L;:
1 & 1 d (Hy\ d V2
Li=—s — .9 J)*— 1
VUHD ay? HH, dn (H,,, dn  H; 4

The functions 6y, (T) are the solutions of Eqs. (11) and their coefficients can be obtained by eigenfunction ex-
pansions of the expressions similar to (10} and (10') obtained for BH, = ¢ = const.

Several examples are now considered,
Heating a Shell of Constant Thickness Whose Mid-Surface Is a Part of a Sphere. Let S+ S, + S, be the
In this case the operator is given by
. R S

dn E(l1—n)

surface of a sphere of radius ¢,
. m2

L= = q )

g an* €

Since the Laplace equation in the spherical coordinate system separates without the aid of an auxiliary
function, A(n) = 1. Moreover, it is obvious that B(n) = 52 = const, N, (n) = 0. For a spherical shell Eq. (8)

is of the form
aeX, dX, i v ) _ 15
—p?) =Ry gy PRy — — 1 X,y = 0. (13)
(1—=m) dn? dn (ph 1—n )"

Thus (7) can be replaced by
(16)

¥ 0., (1) PE(n) cos (vo); 1y = k(k = 1).

T =
v=0 &=0
Here Pﬁ are the associated Legendre polynomials,
The system (11) separates for a sphere into individual independent equations [since B(n) = const, Nu(m) =

01:
L dkhm=Ahm+meﬂ+&fww
(17

LT3
R —_y) 2 ' .
2kl (k=) E g(t, M, ¢) Px(n)cos (vg) dndg;

A () = TERSTRYY

Bt 11

M

U

2% -1 (B—v)l E? "

- . S A PE(M)dn; gay
€y 5 TR (M)dn; gy

—1

1
e G et B I P P
T T2 k+v) A8 e (M e

T2

227



v=0,1,2,...; forv=0,m=4; forv =0,m= 2. Applying the Laplace transform with respect to 7 to Eqgs.

(17) and takmg into account that 6(0) = 0, by virtue of (5) one obtains the following for the transform 4y, (s) of
the function Gk,, ()2

9, (5) = ?‘Z . Bnv (s + eh;fl:;_(‘?h+ Grvlav (S) :
§

Vo= —¢1

Thus, the transform t(s, 5, ¢) of the function T(r, 7, @) is

_a ) x _aPi(m) ethk(n) GwPr(m)
.m0 = Ecos(up)[k;v ekt fuuz + fan (s))‘ fLl } (18)

v=0 k=0

In the general case (1, = 0) the transforms f;, (s) and £y, (s) are found from the conditions
(s, 9) _ o O M @) _g (19)
an ’ on
and are given, respectively, by
kzv (51 ﬂl) my (Sv "12) _ kzv (S, ’ﬂz) m, (S, Th) ,
by (S, M) oy (S5 M) — Ryy (S0 M) Ry (S5 M)

flv(s) =

iy (s, M) my (s, M) — Ry (S, M) My (S, M)
klv ,(S, nl) kév (S’ nz) - klv (S’ ’flz) kzv (S’ 1]1)

fon(8) =

ks, m) = v M, by (S, 1) = “ gkv(Pk) () ,
k__ L 4% k_v S+ Vi

v

' G @EY M)y dPR)

m,(s, m) =
V(5 M) P, an

h=v

Going back to the original functions, one obtains by employing the expansion and convolutlon theorems (of
Borel) [5] the temperature distribution given by

o b
=

oo 'E 2
T= 1 * cos (vgp) ‘ S

5 g, y, ®) ¥ (x—7', y, ) cos (v®) dyd®dr’, (20)
cp

e

V=0 09

3¢

1

Tyt g, W =G ) exp (— v1) + (9, ) exp (— o),
=1

Wv(rr Y )= 2 ‘v (y, mexp (— alvT)v
[==1

@, being the roots of the equations x; (—a )= 0

X P (M) Y gm (PR ()
XV(S)—E S+ V. }-J S+ Vs

R=v k=v

N e P M) Y e PR ()
H 5+ T dind S+ T

k= k=v

0 P 1
¢ (y) = [1—900 L 2k + 1) Ph(J)fio(m) /2 _eno (Pr) () h) ("]) ]

1 [ o, (4 — o) {w e, PL (M)
ma Xv (— a’},v) g Ve — %y

Cry (y, 1]) =
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_:_mZ\ (y’ al\) v ghph(q) }'
. X\(——a,\) A-f Vo — %v

k=

oo

‘ E—v)!  Pi{y)(Py) ()
Oy (Y 8) = Ray (S ) E 2k - 1) Ek — :,;! : tys)_; zzn o

k==v

N\
— by (s M, 9 — 1
(s n»%( )

(k—v)! (PY) () P ()
(B —v)! 5—Va

O (G, 9) = by (5 1) E 2k — 1) 4

R==v

=) Piy) (PR (1)
k — ) S— Y

— v _PHE) Y ()
\')! S—Yr

— E(s M) V (2k - 1)

k_

If the surface S, degenerates into a point (n, = 1), then Eq. (20) is much simpler, since then gy, = 0.

In Fig. 2 the results of calculations of heating segments of a spherical shell which correspond to the
angles ¢ = arccos 1y = 1/2; 27/3; wiore = 0.9 and Ay = 0.4; 0.9 are shown. It was assumed that the elements
of these segments are subjected to the flow of solar radiation qg = AgEnH(n) [H(n) = 1 for n > 0 and 0 for
n < 0], Moreover, it was assumed in the calculations that the heat exchange between the shell and the medium
(which is either inside or outside the shell and has the temperature T, = 303°K) is described by the heat-
emission coefficient hy = 5.8 W/m?.deg. Thus,the specific heat flux appearing in the equations is

9=, (T, —T ) — €6 (4T5Typ— 3T8); h = h, — 4ecT,.

Here Ty and T, are the initial temperature of the shell and the mean value of the temperature for the entire
duration of heating, The following initial values were usedin the calculations: ¢ = 0.1 m; 6 = 0.0015 m;p =
2700 kg/m®; A = 102.3 W/m - deg (alloy Al + Mg); « = 0.152 m%/h; E = 1396 W/m% and Ty, = 293°K.

It is an interesting feature that the temperature does not change monotonically at the front point (& =
arccos 7 = 0) for Ag = 0.4, this being due to the fact that at the initial stage the heating of the corresponding
shell element takes place more rapidly than its cooling due to the flow of heat to the rear region, the latter
becomes cooler due to emission into space. For the states under consideration the steady-state temperature
distribution along a meridian is shown in Fig. 3a-d.

Heating of Shell Bounded by Two Close Prolate Cofocal Spheroidal Surfaces. Let S + S;+8, be the
surface of a prolate spheroid, Prolate spheroidal coordinates are formed by rotating the elliptic coordinate
about the longer axis of the ellipse [4]. The foci of the spheroid are at the points r =0, z = + b (Fig. 4). Con-
sequently, one has [4]

z="bmg, r=0VE— 1)(1——71'2), I<E<<oo, — 1L 029,

1
=—— {1 2 — - .
bi(?—ni)[ d dqn  1—w -1 J
In the adopted coordinate system one has

Amy=1 BM=v¥E—m) N, ()= B(n),

E——l

and the functions X, (n) satisfy Eq. (15); the temperature distribution must, therefore, be sought in the form
(16). Having applied the Laplace transform, Eqs. (9) in this case assume the form

2{[k(k— N ) 0

k=V

b2 2 <* v B 1 v
2 1) 000 ) PR — [0y () = ey () = (9] PE D] =
By expanding the functions nzPLii(n) and v¢ 2——1)2PV (r7) into a series of associated Legendre polynomials Pf{(n):

WP (n) = S‘ dnsPT(0), VE =% Pitn) = F dieP} (),

i
2j+1  (k—w)!
2 (B — W)

1
rn
djpy = j 2P () P} (n) dn,
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2i+1 (B—w) o v v

0 __ . 2 __n 4

d= A e [ vE=T R Pl
N J

one obtains a system of equations for the transforms #ky(s) of the functions 6, (7)

[k(k+ 4o (£ +-—-Y——\] ol = 012 )
gB—1 a 21
}] u(9)+ 0 VET 10 B ,00(6)+ 00 6) -+ i)+ il 0 21)

Under certain conditions the infinite system of linear equations (21) can be solved by the method of successive
approximations. We shall dwell at some length on how the components of the temperature field which possess
cyhndrlcal symmetry (v = 0) should be determined in the case of a moderate eccentricity of the spheroid such
that n /g4 <« 1; consequently,

(1o 1w n? ) ,

Skl
VE—RPIm)~t [ H— 55 2, dyP (n)] .

"f

U’rc

Then the system of equations (21) can be rewritten as

S+ /2 iy, (5)

- ) B0 (8) - Chnss®pano ()] — D 22
B ostw [Ca,1 285 2,0 (8) 5~ Chiio () = Ci,nsaBsn,o (S)] BEH(s -+ ¥s) @2
k=012, ...,
where
L 4 il 9wy (s) = @y (5)
Ve = woBb 3 + k(1) e v (5) 3o (
+ epolyo (5) + Erofzo (S
1
2k L 1
Cp = dupp = 5 n*P, (M) P () dn
Z1
Since ckj 4 0, the system (2) is completely regular (6] if
_l_is+?o/2|ak<e<l; o, = Ec”, 23)
& | s+l "

but Re s > 0; v > 7, > 0; Imy, = 0. Consequently, one has I(s + Y/ 2)/(s + vl = 1 and the condition (23) is
equivalent to the condition
£2>> max 0.

Taking into account that
. E(k—1) o - (k417 - K ,
Chhg = @k—1)(2t—3) BT @R 1) (2 --3) (2R +1(2k—1)
_ (e+ 1) (k+2) ¢, Bo,=0 for j==0; 2,

Ck,k+2 - (2k _:_ 3)(3k + 5) s MRy VEJ
we calculate the sum of the coefficients

32k% 4 80K* — 48k° — 152 — 14k + 21 =2,34 ...)

Ok = 315 1 80K — 80K® — 2004> +- 18k + 45
g, = T[15, oy = 33/35, max ¢, =0, = 29/21 == 1.38.
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Thus, for ;‘2> 29/21 if upy = Q < =, then the system (22) has only one bounded solution which can be
found by using successive approximations starting with any bounded system of initial values [6].

The terms cyidky(s) in Egs. (22) are now transferred to the left-hand side. The condition of complete
regularity is not infringed by it:

: !
S YU/Q 2,0 (5) - Ck,;:+2ﬂh +2,0 (S)]

-2,

By (8) =

- T [C L _E’ﬁk
(B —cm)s — &) }

e (24)
bH(E— o) (s = L)

The system of equations (24) is nowsolved by successive approximations in which #y(s) = 0 is adopted
as its initial value. After two iterations one finds
Qllyg (s) q(l,—h;z_(s - Yo'2) Uk _as (S)

Bra(s) = D (8 — o) (s — &) o (B0 JE—Cr_apn )T LN — L s)

o ack.7:+'z (S _ 70/2) uk&z;o (S) . (k — 0’ l, 2 .. ) (25)

b* (;::: - Ckk) @3 - (g +2,lf+2) {S = ;k)(s e ;I;-:-‘.')

The convergence rate of the procedure improves with the parameter ¢ increasing, Returning to the originals,
one obtains the following for n; = —1, 7y = 1 (Ug = uke):

8,0 (1) = _a [Aho (1) exp (— §1) S C;;,h_zf)k_2!0 (1)
’ b* &ty (82— Chp & —Crh_ayn_a)
L (102 — ) exp(—=Lm) — o2 — & o) eXp(— Lu o)
' A
Ck,k+~zAk+2;o 3] . (Vor2— ) exp (— 50 —{(¥2— L padexp(—3, ;_21;)]
N (8 — )& Cpyg nsa) ' . Cper — i

Here

b, (1) * D, (1) = | Py(1— 1) D, (1) dt
[
is the convolution of two functions & (1) and ®,(r). In the general case (for n; = —1; 5y = 1) the functions f;, (s),
f,, (s) are obtained by substituting the expressions (25) and similar expressions for v = 0 into the boundary
conditions (20), One can then find the temperature distribution.

Similarly, by using oblate spheroidal coordinates {4], one can obtain the temperature distribution when
a shell bounded by two close oblate cofocal spheroidal surfaces is heated up.

Heating a Shell of Constant Thickness Whose Mid-Surface Is a Portion of Torus, Let S+ S, + S, be the
torus surface. Toroidal coordinates are obtained by revolving the bipolar coordinate system around the
perpendicular passing through the middle of the straight line joining the poles (Fig. 5).

Therefore,

bsiny . bshg

chi—cosn ’ chi—cosy ’
ICt<oo; 02 0K <2

n

Since shells of constant thickness (6 = const) are now analyzed, to determine the functions Xy () in
Eq. (8) one replaces the operator L by the operator L of (14):

(chg —cosm)?® [ d&° v2
L= ( .

bZ
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Thus,
b*- v?
Am =1, BW=——————; NW=——,
m ) hE—cosmp () TS
and Eq. (8) reduces in this case to the following equation:
Ay, x,, =0
dn?
Then
M = k% Xew = cos(kn); Xp = sin (kn)

and the temperature distribution in the shell is now sought in the form

T=3 [V B¢ (1) cos (kﬂ)- V eh (@) sm(kq)J <os (vg). @6)
=0 k=0
In this case Eqs. (9) become
‘”1&'2cos‘k 0re ;[ v oo v
‘,,:do (k) Oy (v) shz = 28 (sh & — cos E

b

N cos o) e+~
X‘_‘ 0s (k1) Bey (T} = a(ch g — cos 1)

k=0
X 2 cos (k1) &';‘(—T—)—-— E cos (k1) Az (1)

k=0 =0

Fo (1) 2 Chy COS (kn) —F(v) 2 g, cos (km) = 0. @7

k=0 k=0
In a similar manner one can write down the equations for 61;, {r) corresponding to the eigenfunctions X'iw.

By finding the Fourier expansions of the expressions
cos (kn) , _ sin(km)
__costem) ¢ . _
(chE —cosm)® 2 i cos (/m), {chE — cos )? 2‘ Cisin (/n),

one obtains two independent systems of equations for the transforms ¢, &'iw of the functions e;w, G’EW:

kv
— c, u.
(5 S B = — 3y~ (s a  ho )m\ a M
s Cr A8 B o
I Cu | a m ). @ u
(sft'\')ﬁk\'(s):'—v f Sz ° )‘911“‘!"—?"—“» . 28
B ﬁ Crx \ b Tb Crr (28)

Here

By introducing another variable hiw(s) =(s+ ;iw) &iw(s), one can rewrite the first system of the equations (28)
as
Uy (5)

s ¢, a
hiy (S) = — 2 CI::; ¢ P 51 hl\’ (5) * c);k = (29)

=k

where » = ah/)é.

In the approximate solution we shall confine our considerations to a finite interval by integrating over s
in the inverse Laplace transform, that is, one assumes that isl = o0 <<, Then
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s

L —ou.
.S-,—..lv‘

1

cos ﬁ3£,

Moreover, by taking into account that ¢, = O( L \) vl = O( {Ie +# 1), one obtains the following esti~

coshé
mate:

N\ u s—w —O( 1 )
"_" DG s In cosh £/

Thus, for sufficiently high values of the parameter ¢ and with I|sl= ¢ < « the system (29) is completely
regular a.nd can be solved by successive approximations starting with any bounded system of initial values
provided ukp(s) =u <w, Adopting hkv {s} = G for the initial values ons find after two iterations

PN U SC I I s # zu@] (30)
ﬁk\« (5) = b [ s __‘_ l:l;v :Ai C;‘ (S—‘ ;;\’) (S —‘ cl“’) "

kR

(for higher { the convergenceof the iterative procedure is improved). Going back to the originals in the above
expression with n, = 0, 1, = 27 [ugy (S) = a),,(s)], one obtains

. a B - ,
By = bzcék [AI(V(T) # exp {— kv = E Ah‘ (T)

- Cu

. (L —mesp(—InT) — (e — %) &P (— L) ] _
':l\ - Ck\

In the latter formula one should consider only the first n terms of the sum so that i 'nu' < ¢. Inthe
general case (for n, =0, 1, = 27) the functions f,;,(s) and i, (s) are found by substituting the expressions (28)
into the boundary conditions (20).

NOTATION

T, temperature; Ty, temperature of the medium; Ty, initial temperature of the shell; ¢, u, A, specific
heat, density, thermal-conductivity coefficient of the shell material, respecti\fely; h, effective cosfficient
of heat-emission from the shell; h;, coeificient of heat-emission to the medium either inside or outside the
shell; a, thermal diffusivity; ¢, Stefan—Boltzmann constant; 6, shell thickness; I,, characteristic dimension
along the shell; ¢, 5, ¢, curvilinear coordinate system; H,, H”?’ Hy, corresponding Lamé coefficients;
B=H,; 8, 8, 8,, surface areas of ¢ = const corresponding to shell mid-surface and its complements to a
compleée surface coordinate; q, specific heat flux on shell; q,, gy, specific fictitious heat fluxes in regions S,
and Sy; Xy,,(n) complete orthogonal system of eigenfunctions of Eq. (8) regular on that interval of values of
argument 7 which corresponds to the entire coordinate surface i = const; A(s), multiplier introduced for the
separation of variables; F°(T) F (1), coefficients of Fourier series expansion of the functions 9; (=1, 2y

the superscripts 0, e correspond to even or odd functions of ¢; Pk(n), associated Legendre polynomials;
F1oAdS)s 4y (8)s f,(5), f5(5), transforms of the functions B T)s Ay, (7)s F, (1), FY 9, ().
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